Formalin-induced behavioural hypersensitivity and neuronal hyperexcitability are mediated by rapid protein synthesis at the spinal level

نویسندگان

  • Curtis O Asante
  • Victoria C Wallace
  • Anthony H Dickenson
چکیده

BACKGROUND The mammalian target of rapamycin (mTOR) is a key regulator of mRNA translation whose action can be inhibited by the drug rapamycin. Forms of long-term plasticity require protein synthesis and evidence indicates that mRNA in dendrites, axon terminals and cell bodies is essential for long-term synaptic plasticity. Specific to pain, shifts in pain thresholds and responsiveness are an expression of neuronal plasticity and this likely contributes to persistent pain. We investigated this by inhibiting the activity of mTOR with rapamycin at the spinal level, of rats that were subjected to the formalin test, using both behavioural and electrophysiological techniques. RESULTS For in vivo electrophysiology, Sprague Dawley rats were fully anaesthetised and single-unit extracellular recordings were obtained from lamina V wide dynamic range (WDR) dorsal horn spinal neurones at the region where input is received from the hind paw. Neuronal responses from naive rats showed that rapamycin-sensitive pathways were important in nociceptive-specific C-fibre mediated transmission onto WDR neurones as well mechanically-evoked responses since rapamycin was effective in attenuating these measures. Formalin solution was injected into the hind paw prior to which, rapamycin or vehicle was applied directly onto the exposed spinal cord. When rapamycin was applied to the spinal cord prior to hind paw formalin injection, there was a significant attenuation of the prolonged second phase of the formalin test, which comprises continuing afferent input to the spinal cord, neuronal hyperexcitability and an activated descending facilitatory drive from the brainstem acting on spinal neurones. In accordance with electrophysiological data, behavioural studies showed that rapamycin attenuated behavioural hypersensitivity elicited by formalin injection into the hind paw. CONCLUSION We conclude that mTOR has a role in maintaining persistent pain states via mRNA translation and thus protein synthesis. We hypothesise that mTOR may be activated by excitatory neurotransmitter release acting on sensory afferent terminals as well as dorsal horn spinal neurones, which may be further amplified by descending facilitatory systems originating from higher centres in the brain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Salvinorin A reduces mechanical allodynia and spinal neuronal hyperexcitability induced by peripheral formalin injection

BACKGROUND Salvinorin A (SA), the main active component of Salvia Divinorum, is a non-nitrogenous kappa opioid receptor (KOR) agonist. It has been shown to reduce acute pain and to exert potent antinflammatory effects. This study assesses the effects and the mode of action of SA on formalin-induced persistent pain in mice. Specifically, the SA effects on long-term behavioural dysfuctions and ch...

متن کامل

Spinal 5-HT3 receptors facilitate behavioural hypersensitivity induced by elevated calcium channel alpha-2-delta-1 protein.

BACKGROUND Peripheral nerve injury induces up-regulation of the calcium channel alpha-2-delta-1 proteins in the dorsal root ganglia and dorsal spinal cord that correlates with neuropathic pain development. Similar behavioural hypersensitivity was also observed in injury-free transgenic (TG) mice over-expressing the alpha-2-delta-1 proteins in neuronal tissues. To investigate pathways regulating...

متن کامل

Dimethylarginine dimethylaminohydrolase 1 is involved in spinal nociceptive plasticity

Activation of neuronal nitric oxide synthase, and consequent production of nitric oxide (NO), contributes to spinal hyperexcitability and enhanced pain sensation. All NOS isoforms are inhibited endogenously by asymmetric dimethylarginine, which itself is metabolised by dimethylarginine dimethylaminohydrolase (DDAH). Inhibition of DDAH can indirectly attenuate NO production by elevating asymmetr...

متن کامل

Perturbing PSD-95 Interactions With NR2B-subtype Receptors Attenuates Spinal Nociceptive Plasticity and Neuropathic Pain

Peripheral inflammation or nerve injury induces a primary afferent barrage into the spinal cord, which can cause N-methyl D-aspartate (NMDA) receptor-dependent alterations in the responses of dorsal horn sensory neurons to subsequent afferent inputs. This plasticity, such as "wind-up" and central sensitization, contributes to the hyperexcitability of dorsal horn neurons and increased pain-relat...

متن کامل

Propofol produces preventive analgesia via GluN2B-containing NMDA receptor/ERK1/2 signaling pathway in a rat model of inflammatory pain

Abstract Propofol, an intravenous anesthetic, has been shown to offer superior analgesic effect clinically. Whether propofol has preventive analgesic property remains unexplored. The present study investigated the antinociceptive effect of propofol and underlying molecular and cellular mechanisms via pre-emptive administration in a formalin-induced inflammatory pain model in rats. Male adult Sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular Pain

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2009